Code: 20CE6502

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

ENVIRONMENTAL GEOTECHNIQUES (HONORS in CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

	T			1					
			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Describe the structural units of clay	L2	CO1	7 M				
		minerals with neat sketches. Write the							
		difference between Kaolinite mineral and							
		Illite mineral.							
	b)	Explain the terms (i) Cation Exchange	L2	CO1	7 M				
		Capacity (ii) Diffuse double layer							
		(iii) Adsorbed water							
	OR								
2	a)	Describe different types of bonding in clay	L2	CO1	7 M				
		minerals.							
	b)	Define the term 'Activity'. Write the	L2	CO1	7 M				
		activity values for different types of soil.							
UNIT-II									
3	a)	What factors can affect degree of	L2	CO2	7 M				
		consolidation? How do you find the degree							
		of consolidation?							
		Page 1 of 2		•					

	b)	What are the assumptions in Terzaghi's one-	L2	CO2	7 M
		dimensional consolidation theory?			
		OR			
4	a)	Describe in detail about (i) Gas	L2	CO2	7 M
		conductivity, (ii) Ion diffusion capacity.			
	b)	What is Skempton's pore pressure? Explain	L2	CO2	7 M
	·	the significance of Skempton's pore water			
		coefficients.			
		UNIT-III			
5	a)	Describe in detail factors need to be	L2	CO3	7 M
		considered for landfill site characterization			
		and steps to be followed for landfill site			
		selection.			
	b)	What are the requirements of drainage	L2	CO3	7 M
		materials for Filtration and drainage			
		applications?			
	1	OR	.		
6	a)	Explain about the chemical characterization	L2	CO3	7 M
		methods followed for assessing soil			
		contamination in detail.			
	b)	Discuss in detail about characteristics of fly	L2	CO3	7 M
		ash and its applications in geotechnical			
		projects.			
		* ** ***** ** *			
	· .	UNIT-IV	Τ. Δ		73.
7	a)	Differentiate between finite slope and	L2	CO4	7 M
		infinite slope with examples.			

	b)	What are the requirements of compacted	L2	CO4	7 M		
		clay liners?					
		OR					
8	a)	With neat sketches explain in detail about	L3	CO4	7 M		
		(i) Top liners, (ii) Bottom Liners and					
		(iii) Side liner for landfills.					
	b)	What are the parameters required to study	L3	CO4	7 M		
		the slope stability analysis? Explain in detail					
		about it.					
		UNIT-V					
9	a)	What are various factors to be considered in	L3	CO5	7 M		
		the design and planning of landfill site?					
	b)	Explain the mechanism of treating the soils	L4	CO5	7 M		
		by Electro-Kinetic remediation.					
	OR						
10	a)	Explain in detail about Thermal remediation	L4	CO5	7 M		
		technique.					
	b)	Explain about dynamic analysis of landfill	L4	CO5	7 M		
		liners.					